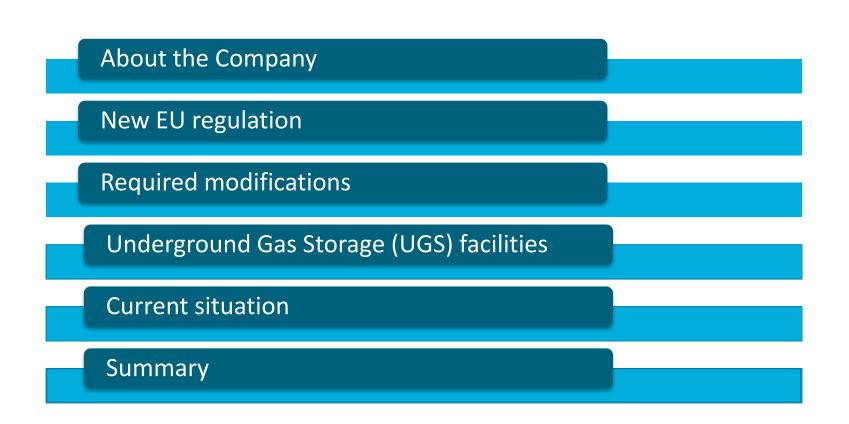
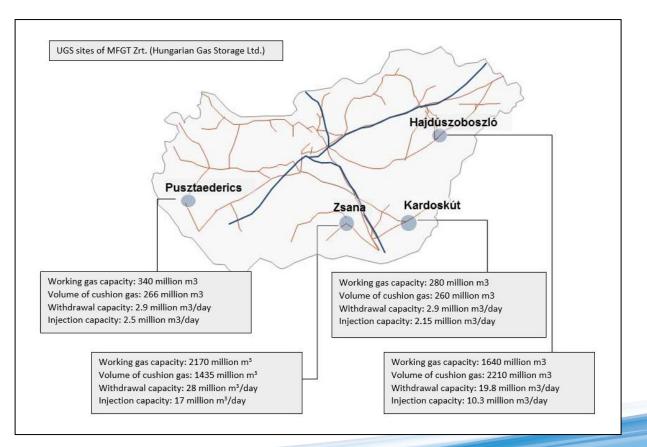


Upgracing the gas processing system of UGS facilities in Hungary


UPGRADING THE GAS PROCESSING SYSTEM OF UGS FACILITIES IN HUNGARY

31st International Oil and Gas Conference and Exhibition; Siófok, 4-6th October 2017 Presenters: Lajos Erdélyi, Norbert Ábrahám



About the Company

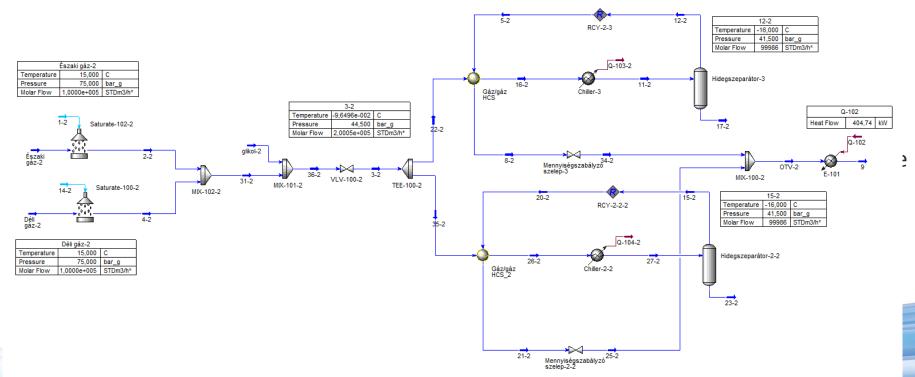
- Magyar Földgáztároló Zrt. (Hungarian Gas Storage Plc.) is part of MVM Group
- Owns and operates 4 UGS facilities
- Max. total working gas volume: 4,43 billion m³
- Max. withdrawal peak: 53.6 million m³

New EU regulation <u>ь</u>

- EN 16726:2015 Standard was accepted by the EU
- ... and in Hungary as well MSZ EN 16726:2016
- Standard specifies European wide the gas quality parameters and their limits
- Aim to allow the free flow of natural gas with uniform quality between the CEN (European Committee for Standardization) member states
- To intensify the trade and safety of supply

	Requirements of MSZ 1648:2000	Requirements of MSZ EN 16726:2016
CO2 content (v/v %)	indirectly (Wobbe)	2,5 (4,0)
H2S content (mg/m3)	20	5
Water dew point (°C)	-	-8*
Water content (mg/STDm3)	170	-
Hydrocarbon dew points (°C)	4**	-2***

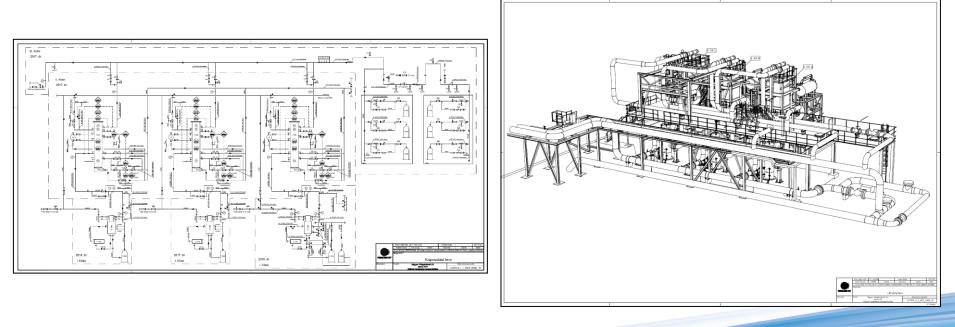
* at 70 bar, or if less than 70 bar, at maximum operating pressure of the system in which the gas flows


** at 40 bar

*** at any pressure from 1 to 70 bar

Required modifications

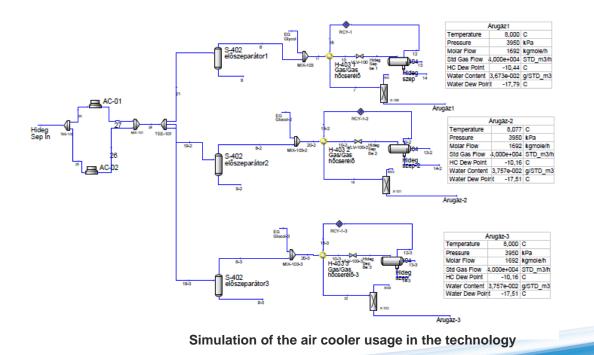
- Task:
 - modify the gas processing elements to comply with the new Standard
- Target parameters:
 - hydrocarbon and water dew point threshold values
- Method (process simulation):



Underground Gas Storage (UGS) facilities Zsana UGS

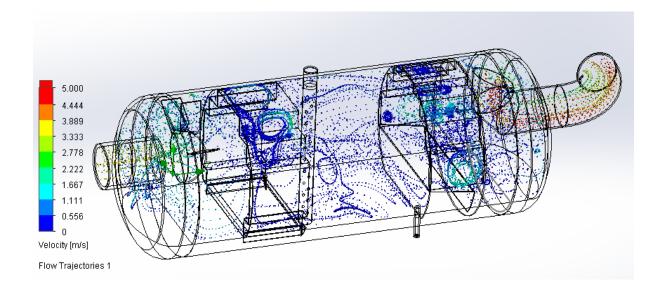
CTING &

- Basic and Detail Engineering Petrolterv Kft.
- Development consists of:
 - to increase the refrigeration capacity (propane coolant),
 - To adjust the heat performance to the new requirements (replacement of Cold Boxes),
 - installation of filter separators to prevent dust entry to Cold Box



- 3D scanning
- 3D planning
- > Accurate design

Results - Pusztaederics UGS


- When the pressure in the sales pipeline is relatively low (40 bara) and the inlet gas pressure is bigger than 66 bara (JT valve)
 - > the process system fulfills the requirement of MSZ 1648:2000
- To meet the requirement of the new Standard, the inlet pressure has to be higher than 67 bara (JT valve)
- If not, than the air coolers of the recompression to be used

Results - Pusztaederics UGS

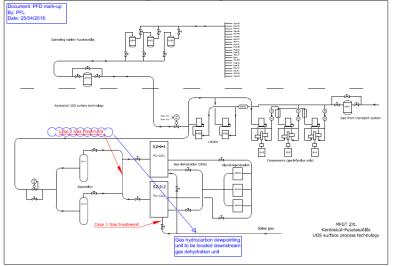
- <u>The upgrade consists of:</u>
 - > air cooler for the inlet gas to use (same cooler like during injection)
 - flow simulation of low temperature separators -> installation of efficient coalescer separators,

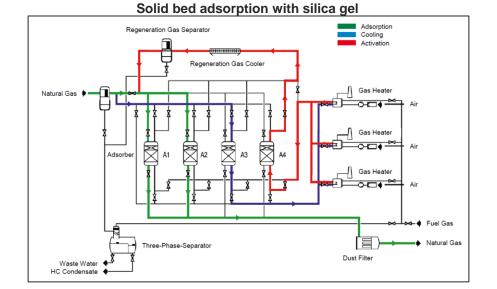
Performance check of the existing separators

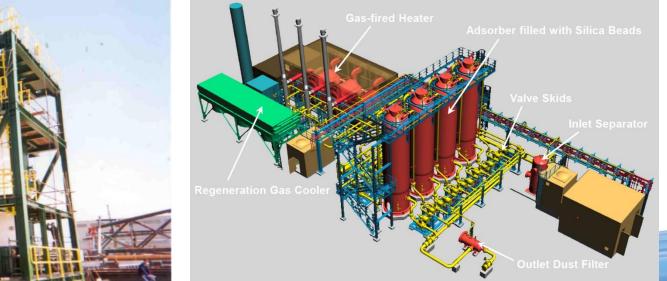
Results - Hajduszoboszlo UGS

- FEED and Basic Engineering
- Goals:
 - to investigate the current process elements for the new requirements
 - to introduce process alternatives to ensure new gas quality
- The current technology cannot satisfy the new Standard

- Possible solutions:
 - Low Temperature Separation (PROSERNAT; FJORDS PROCESSING)
 - Solid bed adsorption with silica gels (SHELL; SILICA GmbH)
 - Twister (Honeywell UOP Technology; Twister BV)
 - Refrigeration, Joule-Thomson valve, Turbo-expander technology, Absorption, Membranes etc.
- Evalutation results low temperature separation process would by the long-term solution




Results - Hajduszoboszlo UGS



Low Temperature Separation

Results - Kardoskut UGS

- FEED and Basic Engineering Design
- Goals:
 - to investigate the current process for the new requirements
 - to introduce process alternatives to ensure new gas quality
- The current process cannot satisfy the new Standard
- Development consists of:
 - Short term installation of a coalescer separator (reduction of liquid carry-over)
 - Long term introduction of new gas treatment technology
- Possible solutions:
 - Low Temperature Separation (PROSERNAT; FJORDS PROCESSING)
 - Solid bed adsorption with silica gels (SHELL; SILICA GmbH)
 - Twister (Honeywell UOP Technology; Twister BV)
 - Refrigeration, Joule-Thomson valve, Turbo-expander technology, Absorption, Membranes etc.
- Evaluation results low temperature separation process would by the long-term solution

- New Standard in force since June 2016 for gas quality parameters
- MFGT started the investigation
- What are the bottlenecks to meet the requirements
- What modifications are necessary on the process system
- Projects launched in 2016
 - in Zsana and Pusztaederics UGS
 - Engineering done
 - Contracting passed
 - Implementations are in progress
- Low scale project are also launched in Kardoskut and Hajduszoboszlo UGS
- Completion dates are in line with the requirements

Thank you for your attention!

